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Abstract—Smart vehicles can cooperate in teams to perform
crowdsensing tasks in smart cities. A critical challenge in this
regard is to build a secure model for nondeterministic vehicle
teams to achieve maximum social welfare. Although several
crowdsensing models have been proposed, none of them has
focused on real-time vehicle teamwork. In this study, to the
best of our knowledge, we propose the first secure model,
called Blockchain-based Nondeterministic Teamwork Coopera-
tion(BNTC), for nondeterministic teamwork cooperation in a
vehicular crowdsensing system. We model the system as a multi-
conditional NP-complete problem by explicitly considering the
dynamic features of task issuers and workers. To solve the prob-
lem, we propose Winning Teams Selected(WTS) algorithm based
on a reverse auction and utilize a knapsack-based method to
solve the models. We consider credit of teams for determining the
payment. Thus, we propose a Credit-based Team Payment(CTP)
algorithm for BNTC to maximize the welfare of the system. We
also propose a general blockchain-based framework to address
trust issues and security challenges to make the method suitable
for use in practical applications. Based on theoretical analyses
and extensive simulations, we demonstrate that the proposed
model performs better than the baselines and can achieve the
maximum social welfare. Implementation with Ethereum suggests
our model can operate within a reasonable cost.

Index Terms—Smart Cities, Blockchain, Mobile Crowdsensing,
Team Perception

I. INTRODUCTION

W ITH the development of the Internet of Things, smart
vehicles are now equipped with many components to

provide a better driving experience, such as wireless network
interfaces [1], environmental sensors, vehicle computers, and
smart user interfaces[2]. Many smart vehicles and Road Side
Units (RSUs) can support for mobile crowdsensing(MCS)[3].
A MCS platform issues tasks such as pollution detection[4],
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mobile advertising[5] and task computing[6] to the vehicles
(i.e., workers) that participate in the system according to
their willingness and bidding price. However, in practice,
users are not willing to participate in vehicular crowdsensing
applications owing to the lack of an appropriate incentive
strategy and concerns about the leakage of private information
when sharing data. Thus, an effective incentive strategy and
safe platform are important for MCS.

Typical crowdsensing schemes function well for tasks that
require a single worker; however, tasks that require real-time
cooperative teamwork by multiple workers are likely to fail
because of subtask failures by some workers or time-outs due
to a lack of sufficient workers. In addition, multiple vehicles
can form a pool of powerful computing resources because of
the increasing computing capacity of vehicle computers. The
computing power of the massive number of vehicles on roads
can significantly support computational tasks in smart cities
due to the development of distributed computing. However,
efficiently utilizing the computational power of numerous ve-
hicles on the roads in a smart city remains to be an unresolved
problem. Thus, building a secure MCS mechanism for IoV
with suitable incentives based on teamwork is an important
issue for smart cities. What’s more, for determination of
payment for workers, some works pay a worker according
to highest utility value based on external pricing [7], without
considering credit and fairness of overall utility, which are
meaningful evaluation metrics to indicate the performance of
the worker and MCS system.

In the present study, to address the problems described
above, we design a model called Blockchain-based Nonde-
terministic Teamwork Cooperation(BNTC) in a MCS system
with IoV to exploit the real-time collaborative computing
power of numerous vehicles to complete MCS tasks which
require teamwork. The main contributions of the present study
are as follows.

1) We design a novel model based on nondeterministic
crowdsensing for vehicular teams. A real-time MCS task can
be distributed by the MCS platform to one or more vehicular
teams directly rather than to some single vehicles. Vehicles
equipped with smart devices form teams to complete tasks.
The model based on teamwork can improve the completion
ratio for tasks by selecting appropriate teams according to their
capabilities.

2) To determine the distribution of tasks, we propose an
optimized reverse auction mechanism based on the knapsack
algorithm called WTS algorithm for BNTC, where it considers
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task completion ratio, social cost, and number of teams se-
lected. We consider the impact of credit factors on the critical
payment and propose a CTP method for BNTC, which is
inspired by the payment determination algorithm described by
[7]. The two algorithms can ensure that the model maximizes
the social welfare.

3) We propose a blockchain-based framework for the non-
deterministic MCS with IoV model. All members in the
system are in a blockchain. Key services are handled by smart
contracts. The framework can ensure the privacy of data for
users and the data integrity for the system. The workers can
work and receive payments anonymously. The fairness of the
payments is guaranteed and the framework makes the model
suitable for practical applications.

II. RELATE WORK

A. Incentive Mechanisms for Mobile Crowdsensing

Incentive mechanisms are employed to select appropriate
workers and to determine suitable payments for workers in dif-
ferent application models, and to ensure that the social welfare
is maximized [8][9][10]. Wang et al. [11] proposed a graph-
based solution to transform Minimum-Delay-Maximum-
Coverage and Minimum-Overhead-Maximum-Coverage to a
connection routing search problem. And Greedy-based recur-
sive optimization approaches were proposed to address the
two problems with a divide-and-conquer mode. Gao et al. [12]
considered different vehicle trajectories and the uncertainty of
driving routes to establish a MCS task system where each
task could be performed jointly by multiple vehicles. Chen,
et al. [13] studied location-ware and location diversity based
dynamic MCS system. However, these algorithms could not
deal with tasks that needed to be completed by multiple
workers within a specific period of time. For works on real-
time cooperation MCS, Yin et al.[14] studied a time-window
based method to manage the emergency task. This method
selected idle vehicles when emergency task happened. Chen
et al. [15] proposed a crowd tracking system that people can
collaboratively kept track of the moving vehicle by taking
photographs. [16] proposed a quality-driven auction based
incentive mechanism with EM algorithm to guarantee trust.
However candidate vehicle is selected in sequence in those
methods to form a vehicle set. They lack attention to big scale
joint computing vehicle resources for MCS.

B. Blockchain for IoV

Veciles can be connected with RSU via advanced wireless
network device[17]. Many methods have been proposed to
solve the identity privacy problems associated with the IoV
when it is combined with a blockchain. Lu et al. [18] used
two types of blockchains to hide the connections between real
identities and public keys. Yao et al. [19] implemented cross-
data center authentication and allowed users to request changes
to their pseudonyms to protect personal privacy. To address
the problem of data security, Zhang et al. [21] addressed the
challenge of combining the mobile features of the IoV with a
blockchain. Kang et al. [20] used a combination of traditional
cloud storage and a blockchain to ensure the reliability of data

in VANETs. Yue et al. [22] used a consortium blockchain to
develop a credit-based data sharing scheme and proposed the
use of a three-rights subjective logic model to monitor the
sources of data to improve the data reliability. A research[25]
has proved entering the blockchain system anonymously guar-
anteed the user’s unconnectability and security to a certain
extent.

In summary, existing researches lack a MCS framework
which can utilize real-time joint computing power and ensure
security protection at the same time. Most of the existing MCS
considers to allocate the subtask to a specific vehicle without
considering teams, which leads to massive time consuming and
cost. In addition, information integration can not be secured
in a cental MCS service sometime.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In the following, we describe the entities in the model, and
explain the design of the functions and services associated
with the entities. We then illustrate the crowdsensing process
in our model.

A. Entity Definition

The model is designed on a blockchain. The network struc-
ture of the model is based on the Internet and a VANET[23].
The model has the following nodes: task issuer node, vehicle
node, RSU node, and Personal Certificate Authority(PCA)
node.

1) Task Issuer Node: Task issuer nodes are generally orga-
nizations or companies with the need for crowdsensing. They
register in the blockchain as full nodes to maintain the whole
ledger. Task issuers can upload task information to the system,
such as completion conditions. Finally, task issuers submit
payments to workers via the system.

2) RSU Node: RSU can identify vehicle nodes that are
capable of participating in crowdsensing tasks in real time.
Each RSU node maintains a table for storing information about
teams formed by vehicles in the current time period. When a
task is crowdsensed, a smart contract collects information from
the RSU nodes to determine the team or teams having the
ability to complete the task. When a team is selected, an RSU
node receives task information and distributes it to the vehicles
in the team, as well as collecting and uploading the results
submitted by the vehicles. RSU nodes are also full nodes in
the blockchain system and they maintain the blockchain.

3) Vehicle Node: Vehicle nodes are vehicles with a vehicle
computer, smart sensors, and network interfaces. All vehi-
cles nodes can communicate with RSU nodes with wireless
network[24]. Vehicle nodes can submit their status, willingness
to complete tasks, and bidding information to RSUs. They
can receive task information from RSUs and submit results
to RSUs. Each vehcile node has credit value. We define the
node with high credit as formal nodes and the nodes with
low credit as informal nodes. In the blockchain system used
in our model, vehicle nodes are light nodes registered in the
blockchain system because of their poor storing capacity and
they have no sufficiently power to generate blocks.
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4) PCA: PCA is a management agency responsible for
identity verification and registering the nodes in the blockchain
system in our model. All the nodes must register with the PCA
to be added to the blockchain. And PCA has access to cloud
server which can provide complicate computing task and store
massive data secretly.

B. BNTC Process

BNTC system shows in Fig. 1.
1) Init System: Nodes with different roles must register

in the blockchain system to use the service. To ensure the
anonymity and security of all the worker(vehicle node), a
certificate is issued by the PCA[25] based on Pointcheval and
Sanders(PS-signatures)[26]. The types of nodes in our system
are different and the blockchain platform must indicate the
roles of the nodes in BNTC by issuing different types of
certificates.

2) Crowdsensing Process: The crowdsening process of
BNTC is described as follows.

Step 1. An RSU node located at a traffic light sets up
network linking the vehicles that enter its road section. The
RSU collects information about the vehicles. The information
is maintained and refreshed within a certain time period by
the RSU.

Step 2. When the task issuer uploads a task for MCS, a
deposit is placed in the blockchain to calculate the candidate
teams and payment. The platform scans all the RSUs to collect
information about the teams and to calculate the most suitable
team set for the task by using WTS algorithm for BNTC. The
payment for winning set is also calculated in this step based
on the credit and bidding price from each vehicle in the team
based on the CTP algorithm for BNTC.

Step 3. The winner team set and its payment information are
submitted to the task issuers by the system. If the task issuer
agrees with the result, the result is signed and the payment is
submitted to the system, otherwise the result will be dropped.
The blockchain system records the information for the teams,
vehicles, RSU, task, task distribution, task issuer, and payment
after the result is signed by the task issuer. Each winning RSU
distributes subtask to the vehicles in the selected team. After
the vehicles complete their task, the result is collected by the
RSU. The RSU records the results in the blockchain and sends
them to the task issuers at the same time. Smart contracts
guarantee that the workers are paid correctly.

C. Problem Formulation

The social welfare should be maximized for the proposed
model. Therefore, a satisfaction formula must be defined to
measure the welfare for society, and thus, two problems need
to be formulated. The first problem involves the manner by
which to select one or several appropriate teams for a task
according to the task requirements, bidding information, and
capability of each vehicle to achieve a high task completion
ratio at a low cost. The second problem involves determining
an appropriate payment for the selected team to ensure that the
incentive is adequate for workers. These two problems both
contribute to the social welfare of the system.

Task issuer

RSU node

Vehicle node

Blockchain

Smart contract

Account

Server

Cloud server 

PCA

Cloud

Edge

IoV User

User

Fig. 1: Framework of BNTC System

IV. ALGORITHM

To solve the problems raised above, we introduced two
algorithms for the BNTC system: Winning Teams Selected
algorithm and Credit of Teams Payment algorithm for the
BNTC model. The main notations used in this system are
shown in Table I.

TABLE I: Notations

Notations Description

V Existing total vehicular teams
V−v Existing total vehicular team except team v
S Scale of task
N Total number of vehicular teams
vk The kth vehicular team
yik The ith vehicle in the kth vehicular team
tck Number of sub-tasks which vehicle team vk can

complete
qik Completion Probability of vehicle yik
Pk Completion Probability of vehicular team vk
rik Credit value of vehicle yik
Rk Credit value of vehicular team vk
Bk The average bid of vehicular team vk
χ Winning team set of the task
Costχ Cost set of winning team set
Paymentχ Payment set to winning team set
χ−v Winning team set of a task excluding team v
A Number of winning teams

A. Problem Description

The following definitions are required to explain the algo-
rithm. In the entire network, N vehicular teams form a whole
team set V = {v1, v2, ..., vN}. The formal vehicles included
in the team vk are {y1k, y2k, ..., y

mk

k } with a total number of
mk. The informal vehicles are not considered because the
low completion rate in their history would lower the predicted
probability of completing a task by the team. The completion
capacity of a team is defined as tck = mk ∗ c, where c is
a constant value which denotes the number of subtask one
vehicle can complete within a limited time. One task can be
divided into A parts, {s1, s2, ..., sA}. A vehicular teams can
complete a task together.
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rik is the credit of the vehicle yik. The credit is related to the
number of participation and failures. “n” is the total number
of participation in tasks by vehicle yik . “m” is the number
of failures at task for rik. “ω” is an adjusted parameter to
ensure that when a vehicle achieves a success after a failure, its
credit will increase to a level lower than that before the failure.
More successful completions are required to compensate for
previous failures. flag denotes the status of the task result,
where 0 indicates a failure and 1 represents success. (rik)

′

denotes previous credit of yik. Thus, rik is given by

rik =


1− 0.1m, n ≤ 5, f lag = 0

max((rik)
′ ∗ (1− n−m

n ∗ ω), 0), n > 5, f lag = 0

min((rik)
′ ∗ (1 + n−m

n ) ∗ ω), 1), n > 5, f lag = 1
(1)

The initial value can be set as 1. The credit of a vehicular
team vk is given by

Rk = (
∑
yikεvk

rik)/mk. (2)

The probability of vehicle yik can be estimated from histor-
ical data. Formally, it can be defined as :

qik = min((1 + ∆rik) ∗ qik, 1). (3)

Here, we calculate the probability that vk completes a task
is:

Pk = 1−
∏
yikεvk

(1− qik). (4)

Multiple teams can cooperate together to complete a task.
The probability of completion for joint teams can be calculated
as P̃n = 1 −

∏
(1 − Pi). When the probability of a team or

joint teams completing a task is higher than the requirement
of a task, they are considered suitable for the task.

In addition, each vehicle will have a bidding price for a
task. The bidding price for a task by a team is the sum of the
bidding prices for each vehicle in the team.

B. Problem Model

The completion probability of teams PV is given by

PV = {P1, P2, ..., PN}. (5)

The scale of sub-tasks for each team in a vehicular network
of N teams is given by

TC = {tc1, tc2, ..., tcN}. (6)

In the vehicular crowdsensing problem, we consider that the
bid of a worker is equal to its cost. The bidding by each team
in a vehicular network of N teams to complete a task is given
by

BV = {B1, B2, ..., BN}. (7)

The social payment for a task issuer is given by

Paymentissuer =
∑
χ

paymenti. (8)

A vehicle can submit its real cost for a task and get proper
reward from task issuer. Overpayment ratio(OPR)[12] is the

measurement of the reward and a indicator of social welfare.
The overpayment ratio is given by

OPR = (Payment− Cost)/Cost. (9)

Social welfare of this system is given by

WSocial =
S

α1 ∗ Cost+ α2 ∗OPR ∗ Cost+ α3 ∗A
. (10)

S is the scale of a aim task that needs to be completed. A is
the number of winning teams. α1, α2 and α3 are adjustable
parameters to ensure the progressive of the three conditions.

The winner team set is given:

χ = {x1, x2..., xA}. (11)

In this model, we need to determined χ to maximize WSocial

. The following assumptions are required to solve χ.
Assumption 1: The existing vehicular network must be able

to satisfy the demand in terms of the number of sub-tasks
uploaded by the task issuers. Thus, a task can be crowdsensed
by one or several teams.

Assumption 2: The team formed to complete a partial task
must remain stable throughout the whole process, so the
completion of the work depends only on the task completion
probability for each vehicle.

Assumption 3: The bid of a vehicle is its real cost for a
sub-task.

Assumption 1 and assumption 2 are easy to meet in practi-
cal. Assumption 3 is proved in [16].

C. Winning Teams Selected algorithm for BNTC

Teams or joint teams with a high probability of task com-
pletion are selected as the candidate set for a task, thereby
improving the task completion rate. Selecting appropriate
teams for a task from the candidate set involves minimizing the
number of teams to reduce the time consumption by the system
and minimizing the total cost for the vehicular teams to satisfy
the task issuer. Thus, a satisfaction formula that satisfies the
multi-conditional problem is defined and our aim is to select
a candidate team based on the satisfaction formula. We define
the satisfaction(SAT) formula as follows:

SAT = −((amin − amax − 1) ∗
∑
χ

Bi −A) (12)

= (1 + amax − amin) ∗
∑
χ

Bi +A. (13)

where, amin and amax is the boundary value that divides the
number of teams.

Proof: First, we consider that the bidding B is constant. A
low team number A is better. We define the formula:

f(A) = k1A s.t. A1 > A2, f1 < f2

Thus, k1 < 0. We simply consider k1 = −1. Similarly, for
bidding B, we extend the formula above to the following:

g(B,A) = k2B −A
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We consider that the satisfaction is lower when the cost is
higher. When B1 > B2,∀A1, A2ε[amin, amax], we can obtain
g1 < g2.Thus,

k2B1 −A1 < k2B2 −A2

k2 <
A1 −A2

B1 −B2

So, we first use the inequality scaling method to obtain

k2 < min(
A1 −A2

B1 −B2
)

We second use the inequality scaling method to get

k2 < amin − amax

Simply, we make

k2 = amin − amax − 1

We obtain the formula:

g(B,A) = k2B −A (14)

= (amin − amax − 1) ∗
∑
χ

Bi −A. (15)

We can conclude that the SAT result is always a negative
number. Therefore, we reverse it and turn (15) into a positive
number in the calculation process as (13). Thus, the satisfac-
tion is greater when SAT is smaller. To solve the problem
of selecting teams χ for tasks, we propose a knapsack-based
algorithm called winning teams for the BNTC algorithm. In
BNTC algorithm, the dynamic state transfer function is to get
the minimum value which denotes the maximum satisfaction
at that aim scale task. We use array SA to denote the status
of SAT in the procedure of dynamic transfer,

SA[j] = min(SAT (SA[j − TC[i]], TC[i]), SA[j]) (16)

where, j denotes the task scale. When the task scale is
j − TC[i] and team i is selected, the task scale is j =
(j − TC[i]) + TC[i], the satisfaction function of scale j
is SAT (SA[j − TC[i]], TC[i]). We update SA[j] with the
minimum value between SAT (SA[j − TC[i]], TC[i]) and
previous SA[j].

The pseudo code is shown as Algorithm 1. Task scale S,
candidate teams count N , bids set BV [N ] and team capacity
TC[N ] are input while winning team set χ is output. We
need traverse from 0 to N. We calculate from scale S to the
scaleTC[i] of team i. The satisfaction of every team scale is
calculated until the minimum value which denotes maximum
satisfaction of that scale is achieved.

The time complexity of the algorithm is O(SN). Using
the idea of dynamic programming, the knapsack algorithm
can directly determine the optimal result that satisfies the
completion of a certain number of tasks.

Algorithm 1 Winning-Bid Selection Algorithm

Input: S,N , BV [N ], TC[N ]
Output: value, nums, χ
1: WinningTeamSet← []
2: nums← 0
3: for i = 0 to N do
4: for j = S to TC[i] do
5: bs← SAT (SA[j − TC[i]], TC[i])
6: if SA[j] > bs then
7: SA[j]← bs
8: WinningTeamSet[j]←WinningTeamSet[j−

TC[i]] ∪ i
9: end if

10: end for
11: i← i+ 1
12: end for
13: for i in WinningTeamSet[S] do
14: value← value+B[i]
15: nums← nums+ 1
16: end for
17: χ←WinningTeamSet[S]
18: return value and nums and χ

D. Credit-based Team Payment algotirhm for BNTC

In this section, we discuss how to determine the rewards for
selected teams with CTP algorithm for BNTC. To guarantee
the fairness of each team, we pay team x according to its credit
and extern pricing which is calculated by utility and overall
utility of another best candidate team set with x excluded.
When a task can’t be completed without team x, team x is
regarded as “Critical Team”. When a task can be completed
without team x , team x is regarded as “Ordinary Team” First,
we define the utility of a team x for the sub-task as Utilv :

Utilv = TCx/Bx. (17)

We define average utility value of a new winning set without
team x as eUtilv :

eUtilv = S/
∑
vεχ−x

Bv. (18)

Thus, we determine the payment to winner team x as Payx. If
x is an “Ordinary Team”, we pay x as (19). If it’s a “Critical
Team”, we pay x as (20).

Payx = tcx((1/eUtilv + 1/Utilvmin)/2 + (R0 −R)2) ∗ ϕ
(19)

Payx = tcx ∗ (1/Utilvmin + (R0 −R)2) (20)

where, R0 is the benchmark value of the reward. ϕ is
an adjustable parameter for reward. The description of this
algorithm is listed in Algorithm 2.

We need to give a price to each vehicle in the network
team and each price must be calculated by recalculating the
allocation. Thus, the time complexity is: O(A∗S ∗(N−1)) =
O(ASN).
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Algorithm 2 Rewards Payment Algorithm

Input: S, N , BV [N ], TC[N ], χ
Output: Reward Paymentχ
1: for all xεχ do
2: TC ← TC−x
3: BV ← BV−x
4: if CriticalTeam then
5: paymentx ← eq.(20)
6: end if
7: recalculate winning set result without x as

χ−x, value−x, num−x by Algorithm 1
8: select Utilvmin = minimum(Utilv) from χ−x
9: paymentx ← eq.(19)

10: end for
11: return Paymentχ

V. EVALUATION

In the following, we introduce the experimental environment
and the dataset employed. We first experimentally evaluate
WTS algorithm and CTP algorithm for BNTC, as described
in the previous section, and analyze the experimental re-
sults. Then we evaluate resource consumption of BNTC in
blockchain.

A. Dataset and Experimental Design

We mainly conduct simulation experiments. We simulate the
status of different users for bidding tasks. We use the dataset
of [27] in Bologna, Italy. This dataset collected road vehicle
information from 8 am to 9 am a day. The road map of the
dataset is shown in Fig.2. When a congestion occurs at an
intersection, a vehicular network team is formed by RSU(more
than 10 vehicles). We assume all the vehicles on road are able
and willing to participate in conducting crowdsensing tasks.
And all data submitted by vehicles are reliable.

TABLE II: Initialization of Major Parameters

Parameters Initialization

Credit of a vehicle 1.0
Initial probability of a vehicle 0.8
Require probability δ 0.5
Cost coefficient range [1,1.5]
ω 0.5
α1, α2, α3 0.7,0.2,0.1
R0,ϕ 0.5,10

B. Experiment Result

We use the following metrics to evaluate the performance
of our system: social welfare, social cost of team workers[16],
social cost of task issuers(payment), the overpayment ratio,
and number of winning teams. The baseline algorithms in this
experiment were MCBS [12] and the DQDA algorithm [16]
in the EM algorithm for evaluating the data quality.

The initial settings of the simulation are shown in Table II.
α1, α2 and α3 are parameters representing the weight of cost,
overpayment and account of winning teams in our model. We

Fig. 2: Map of Bologna
area.

Fig. 3: Social Welfare of
the System.

Fig. 4: Social Cost of the
System.

Fig. 5: Social Payment
of the System.

Fig. 6: Over Payment
Ratio of the System.

Fig. 7: Number of Win-
ning Teams of the Sys-
tem.

init them based on the concerns of maximize social welfare.
R0 is base credit set by PCA. ω and ϕ are parameters to adjust
payment to each vehicle and can be initialized by experience.

1) Social Welfare: The social welfare results are shown in
Fig. 3. The social welfare is measured using the satisfaction
formula. The social welfare is largest with BNTC among the
three algorithms.

2) Social Cost: In the case of different workloads, the costs
for all workers with each algorithm are shown in Fig. 4. The
results indicate that the cost increases and the task issuer needs
to pay more as the task scale increases. As shown in Fig. 3,
the cost of the BNTC algorithm is always the smallest under
the same condition and the knapsack algorithm could obtain
the optimal solution in a distribution.

3) Social Payment: The task issuer pay rewards to the
selected team. The results indicate that the total payment is
highest with BNTC among the three algorithms under the
same condition. The payment increases with task scale. The
mechanism employed by MCBS is similar to that used by
BNTC. However, MCBS considers the utility ratio rather than
scale. The results are shown in Fig. 5.

4) Overpayment Ratio: The experiment on the overpay-
ment ratio demonstrates that the overpayment ratio is not
correlated with the scale of tasks. MCBS still lead to high
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overpayment ratio due to its external prices mechanism. In
some case(task scale 210), the over ratio of DQDA is the
best. The payment are more approximative with real cost. But
it suffers high cost and payment problems. The results are
shown in Fig. 6.

5) Winning Team Count: The numbers of teams selected
for a task are shown in Fig. 7. BNTC performs better than the
baseline methods in most situations. However, BNTC is not a
greedy algorithm. Thus, it might not have performed as well
as MCBS according to this indicator.

The experiments show that BNTC performs better than
the baseline methods in terms of most of the indicators.
The satisfaction formula shows that BNTC could achieve the
minimum payment and cost, and the maximum social welfare.
Compared with the other two methods, BNTC has the lowest
social cost and lowest payment. Since overpayment ratio is
inversely correlated with the social cost, so BNTC tends to
yield a high overpayment ratio in some cases. Above all,
BNTC is more effective than baselines.

6) Credit For BNTC: Simulations for overpayment ratio of
a teamset is shown in Fig.8. With a larger credit value, a team
is likely to get a higher pay for its work.

A vehicle will get a heavy penalty for failures(e.g. malicious
actions). It will take more successful actions to get back to its
previous normal credit value. Simulation results is shown in
Fig.9.

Fig. 8: Overpayment
ratio with Change of
Credit.

Fig. 9: Change of Ve-
hicle Credit because of
Failure(eg.malicious op-
eration).

C. Resource Consumption Evaluation

1) Registration Performance: PCA generates an anony-
mous certificate for each vehicle node and key pair for RSU
node and task issuer node. We evaluate the performance for
certificate and key pair generation in Golang off-line. Results
show the time consumption is acceptable, as shown in Table
III.

TABLE III: Generation Time

Operations Entities Time(ms)

Certificate Vehicle Node 166
Key Pair RSU node and Task Issuer Node 27

2) Smart Contract Performance: We build an Ethereum
priavate chain with a PC and five Raspberry Pies for simula-
tion. PC is regarded as task issuer. RSU services and data are
loaded into Raspberry Pies. In order to show the performance
of WTS algorithm and CTP algorithm for BNTC in smart

contract, we use gas model of Ethereum to measure the cost
of each function of the algorithms. We set the gas price as
0.000000001 (1 Gwei) Ether per gas as in [16]. The price of
each Ether is around 141.53$ on April 1st in 2020. The two
algorithms only cost 1.419$(0.2304+1.189) to get distribution
and payment result. The resource consumption is within a
reasonable range.

VI. CONCLUSION

In this study, we propose a nondeterministic vehicular
team task model to efficiently utilize the joint computing
power of numerous vehicles in cities. Our model employs
team cooperation to ensure the completion of crowdsensing
tasks. The model runs on the blockchain platform and smart
contracts can guarantee the security of the system. Based on
the reverse auction method, we propose WTS algorithm and
CTP algorithm for the BNTC to maximize the social welfare
and minimize the time consumption. Theoretical analyses and
extensive simulations demonstrate that the proposed model
performs better than the baseline methods and it achieves
the maximum social welfare. At last, implementation with
Ethereum suggests our model can operate within a reasonable
cost.
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